calibration using a small Low energy accelerator

S. White, BNL LBNE meeting 2/5/10

- Michel electrons correspond to the energy of electron machines used in other fields
- these can be ordered through eg. Radia Beam, AES
- or adapted from several machines now being excessed- eg. MIT, Vanderbilt FEL
- Construction and ops. cost is signifiant
- these machines have interesting parameters- ie 3 psec time structure of ATF
- hard to operate them below ~10⁷ to 10⁸ electrons/pulse

We are developing a scattered beam of 1 electron/pulse

This could be useful for LBNE energy calibration

Pre-production Hybrid photodetector

"A 10 picosecond time of flight detector using APD's", SNW et al.

Bise(C1)* 737 8ps. Unstable histogram.

Ch1 20.0mV Ω

M5.0ns 10.0GS/s | IT 10.0ps/pt

Deep diffused avalanche photodiode Sebastian White

M 5.0ns 10.0GS/s IT 10.0ps/pt
650 picosecond risetime (β's)

<u>Transit time spread & time jitter, using 100 MHz leading-edge vs CFD vs PicoHarp</u> (good results from laser measurements at BNL. Now preparing e⁻ beam run.)

PicoHarp TTS measurement = square root((32 ps) 2 –(18 ps 2)) = 2 6.4 ps (FWHM) A short exponential tail remains.

-> going into beam test rms jitter from electronics&TTS< 10^{-11} sec

Elastic Scattering and Atomic Structure

- Rutherford, Geiger, Marsden (1909)
 - Atom's 100th Birthday!
 - Rutherford's teacher, JJ Thomson, discovered
 electron 10 years earlier
 JJ Thomson & Ernest Rutherford
- "counter experiment"
 - Beam of 5 MegaVolt a particles from Radium C decay
- R. showed that a= Helium Nucleus

Rutherford Scattering

- ©Cosec(theta/2)⁴ is a very rapid slope
- Rutherford saw departure from this
- Hofstadter showed that due to nuclear size

- we are using this to make custom beam

an 80 MeV electron accelerator

Kirk and Milind between beams 1 & 2

T. Tsang, M.Chiu, M. Diwan, S. White, G. Atoian, K. McDonald, K. Goulianos, D. Acker

Applications: RHIC upgrades, electron-Ion Collider, SuperBelle, ATLAS- AFP

If you like inelastic peaks you can tune them with angle and Target choice.

Hofstadter data were at ~80 Mev so easy to check these calculations

Background Test

direct e-hole pair measurement with large active volume APD(blue) In this case with large controlled losses.

visual- from "the bee"

little dependence of emittance blowup on target type in spite of FF

the beamline

Custom made turn-key accelerator

Item	Value
RF operating frequency	2856 MHz
RF pulse flat-top duration	3 μs
Max. RF input power	10 MW
Max. accelerating gradient	100 MV/m
Max. beam energy at gun output	4.5 MeV
Bunch charge	0.1-1 nC
Repetition rate	10 Hz
RF operating frequency	2856 MHz
RF pulse flat-top duration	3 μs
Max. RF input power	15 MW
Max. accelerating gradient	20 MV/m
Max. energy gain per section	60 MeV
Repetition rate	10 Hz

The approximate breakdown of the total cost is as follows:

Photoinjector gun system: \$440,000

Photocathode drive laser system: \$481,000

100 MeV linear accelerator system: \$628,000

RF power system: \$1,244,000

Installation and commissioning support: \$129,000

Assembled Components

Table 5: rough Costs

Component costs		
TiSaphire Laser (ATF quote)	400k	
Photoinjector (AES, Radia Beam)	350k	
2 Klystrons	250k	
2 Modulators	500k	
2 Sections	300k	
Low level RF, etc.	200k	
Supports, etc.	100k	
Total	2.1M USD	

Installation/ Operating costs could be significant

- construction@ 1 RF/Laser engineer
- •1/2 year engineer for safety review
- 1-2 staff depending on operating model

Turn-key system could come with key training

Beam Transport

- Our design gives 0.1-0.7 degree MCS angle in outgoing beam.
 - original idea was to have no emittance impact and allow multiple beam ports.
 - now exploring optics after 1st target.
 - -are multiple ports needed or practical?
- In the secondary beam we designed for 1 or 0.5 degree acceptance. To transport beam deep into detector need additional optics.
 - –0.5m triplet seems practical. basically point to parallel design
 - -source is ~1mm spot and no momentum spread so we feel transport over many meters possible. 15